

LANDSCAPE PHOTOGRAPHY

SAMPLE FROM MY UPCOMING BOOK

Landscape Photography

How to photograph the natural world

AI images and text Copyright 2025 Stuart Pryer

First Edition Published December 2025

Full resolution Images which are in this book are available for purchase. Note that images are down-sampled and converted to jpeg for this publication. Please contact me for information. stuartpryer@gmail.com

My website <https://stuartpryer.co.uk>

Most of the images in this book have been taken in Cornwall. UK.

Front cover. Clouds at Sunrise. Lens Sony 20 to 70mm set to 40mm at f4 1/100 sec.
Full frame Sony A7rIII camera hand held. Always try to simplify your images.

INTRODUCTION

This is not a book which tells you how to use image editing software. It does not tell you about the basics of photography such as aperture, ISO or shutter speed. There are plenty of books and you-tube videos which cover these things. This is simply a book about landscape photography and how to get 'your' best photographs. Hopefully it will give you inspiration and some ideas which may help you improve your images.

I have not included images from exotic locations. This is a book for the 'man in the street'. One who juggles work and play and often only has the time or money to take landscape photographs close to where they live. If you can take good photographs in your own back yard then exotic locations will present few problems!

Stuart Pryer
Cornwall
UK

Table of Contents

INTRODUCTION	3
EQUIPMENT	6
CAMERAS, LENSES AND ACCESSORIES	7
WIDE ANGLE LENSES	8
PRIME LENSES & MACRO LENSES	8
CLOSE UP LENSES	8
TELEPHOTO LENSES	9
RESOLVING POWER	9
FILM PHOTOGRAPHY	10
TAKING A LANDSCAPE PHOTOGRAPH	11
RESEARCHING YOUR PHOTOGRAPHY LOCATION	12
WEATHER	12
BASIC PRINCIPALS	13
THE STANDARD 50MM LENS	13
WIDE ANGLE LENS	15
TELEPHOTO LENSES	17
SUNSETS	19
LANDSCAPES AT NIGHT	20
NOISE	21
CIRCULAR POLARISING FILTERS	22
NEUTRAL DENSITY FILTERS	23
MACRO PHOTOGRAPHY	24
ASTRO PHOTOGRAPHY	28
POST PRODUCTION – AT THE COMPUTER	30
THE IMPORTANCE OF RAW FILES	30
SOFTWARE	30
POST PROCESSING	31
CROPPING	32
USING MASKS TO MAKE ADJUSTMENTS TO YOUR IMAGE	34
PANORAMAS	35
STACKING AND BLENDING	36
BLACK AND WHITE	38
FRAMING YOUR IMAGE	40
PRINTING	41
LANDSCAPE PHOTOGRAPHERS OF NOTE	42
INDEX	43
END PAGE	45

St. Michaels Mount. Contra Jour - against the light. Although it's a full colour image, it is essentially monochrome. Taken with an Olympus E400 micro four thirds camera in 2006.

EQUIPMENT

There is no right or wrong camera. In fact, modern phones can produce excellent images.

A panoramic view of London and the Thames taken with an 'antique' iPhone 11 pro. I cropped the image, corrected wide angle distortion and improved contrast and saturation. 'The best camera is the one you have with you'.

If you want to improve the control you have over your images then a mirrorless camera is the way to go. All the major manufacturers produce excellent camera bodies and lenses. Sigma, Tamron, Laowa etc. also produce lenses to go with the bodies. You can choose between medium format, Full frame, APS-C and Micro Four Thirds. Any of these sensor format sizes can produce great images!

I recommend you start with one lens. A 50mm f 1.8 is a good lens to begin with. You can add lenses, but remember changing body manufacturer such as going from Nikon to Canon can be expensive, as lenses are designed to work with a particular manufacturer. You will then have to change all your lenses too!

CAMERAS, LENSES AND ACCESSORIES

I currently use a Sony A7riii with a 43 mega pixel sensor. I use a matching L bracket by 3-Legged Thing. This has a built in Arca Swiss mounting for switching quickly between landscape and portrait modes on a tripod head. For landscape photography I primarily use two lenses. A Sony 20 to 70mm G zoom and a Sony GM 100 to 400mm zoom. For Macro photography I also use other lenses including the Sony 90mm G f2.8 macro and the Laowa 25mm f2.8 ultra-macro. 2.5 x to 5x. For Astro photography I use an Olympus Zuiko 90mm f2 Macro and an Olympus Zuiko 24mm f2.8 lens. For images of the moon, I use the Sony 100 to 400mm lens.

The filters I use are a circular polariser for saturating colours by reducing reflections and it also cuts light by 1.5 stops. I also use Neutral density ND filters. ND1000 (10 stop), ND64 (6 stop), ND8 (3 stop) and an ND 4 (2 stop). These are used primarily to smooth moving water or clouds.

Another important piece of equipment is a tripod. Heavier tripods are generally sturdier especially in the wind. I use either a 3-way adjustable head for precise control on a heavy studio tripod or a large ball head on a carbon fibre travel tripod depending on how far I am walking. Tripods slow your photography down. And this is good, as I find I can take more time over composition and frame more precisely. I use Manfrotto, Benbo and Vanguard tripods.

I use a remote shutter release with a built-in timer, time lapse function, wireless release and bulb timer function. This is useful to stop camera shake which will occur when pressing the shutter release. You can also use it for long exposures which can run into minutes. Make sure if you get one it is compatible with your camera. I also use Camera phone apps such as Sony Imaging Edge, Camrote and Alpha Focus Bracket to control the camera from my phone.

For hand held Macro photography I use a Godox 860iii flash for Sony. This is used with a CygnusTech diffuser which is hand-made to order in Cairns, Australia by Brendan James. For static subjects I use LED lighting.

If you own old camera lenses then these can often be used with adaptors on modern digital cameras. They often require manual focussing and aperture adjustment. I own a collection of lovely Olympus Zuiko prime lenses from 24 to 300mm, which are not wasted! My favourite is their 90mm f2 macro.

Finally, a back pack. This is far more comfortable than an over shoulder bag unless you are carrying just one lens. There are many makes to choose from. I use Vanguard. I find it can weigh between 8KG and 12 KG with the equipment in it. The Tripods weigh between 3.5 and 2.5 KG with their heads attached.

WIDE ANGLE LENSES

I prefer using zoom lenses most of the time. I do use prime lenses, but zooms are very high quality these days, computer designed and are very convenient and reduce the need to constantly change lenses. My favourite wide angle zoom range is 20 to 70mm, but a common alternative is 24 to 70mm. On my 20 to 70mm I can crop in to 100mm without a problem. Or even further depending on how the image is used. The key with wide angles is having a foreground interest.

PRIME LENSES & MACRO LENSES

I have a collection of prime lenses. Their main advantage is they generally have wider apertures so are an advantage in low light or for astrophotography. Their image quality may be fractionally better than zooms but the difference is so small now. It was a different story in the 1980's. My main prime lens is the Sony 90mm f2.8 macro. But I also use the Olympus Zuiko 90mm f2 macro, 50mm f3.5 macro and 24mm f2.8 lenses. Macro lenses tend to be bitingly sharp. 90mm is a great lens for portraits. Sometimes the image may need a little softening in post-production as it will so every skin blemish.

CLOSE UP LENSES

I use a NISI close up lens to turn my Sony 90mm macro lens into a 2x macro lens. Its excellent. The alternative is to use extension tubes which go between the lens and camera body. These are cheaper than a good close-up lens but will not correct for close up aberrations.

TELEPHOTO LENSES

If I could only have one lens, I would choose the 100 to 400mm telephoto zoom lens. This lens lets you choose so many compositions from one focal point. It lets you see detail which your eye cannot resolve. It will accentuate mist and the loss of contrast which happens with distant objects. It also creates great subject separation as it has narrow depth of field. Each major manufacturer offers a zoom range of 100 to 400mm as well as Tamron and Sigma.

RESOLVING POWER

The maximum focal length lens I use is 400mm. I don't use teleconverters. The best seeing in most areas of the world is 1 arc second. This is 1/3600 of a degree. This is limited by atmospheric seeing; imaging through the atmosphere. The exception is at the tops of mountains where you might find astronomical observatories, which may occasionally achieve 0.2 arc seconds on the very best of nights when the air is still.

Now with my 43mp sensor each pixel resolves 1.02 arc seconds at 400mm. This assumes the resolving power is not limited by diffraction. I.e. An aperture wider than f16. By using a longer focal length than 400mm I generally get 'empty' magnification. You just get atmospheric blur. This is why I prefer to crop and if necessary upscale using AI. Teleconverters degrade the image from the lens, even when using the best ones available. There are very few occasions a landscape photographer will benefit from a lens longer than 400mm. Finally, remember that longer lenses are very heavy and can be tiresome to carry around!

With Macro lenses the resolving power, where an image is not diffraction limited, is related to the magnification and aperture. At a magnification of 5:1 (5 times life size) the aperture will need to be typically f2.8 or wider. F5.6 for instance would make the image limited by diffraction.

FILM PHOTOGRAPHY

St Just in Roseland church. Taken on an Olympus OM4Ti camera and an Olympus Zuiko 180MM f2.8 lens using Fuji Velvia 50 ISO slide film. Circa 2002.

There are still many aficionados of film photography. Many people use film and digital. There was something magical about waiting for your film to be processed and posted back to you! I used to print using an enlarger, blacking out a spare room to set it all up. Now it's all done using image processing software on my Mac. If you have collections of slides and negatives you can get high resolution / bit depth scanners to create digital scans. Good scanners can produce images of around 40 mega pixels with a bit depth of around 14 stops. But most film can only produce a contrast range of around 6 stops and has a resolution under 20 mega pixels. But once scanned you can then edit them in Photoshop, Affinity or any one of the multitude of image processing packages.

TAKING A LANDSCAPE PHOTOGRAPH

Let me quote from a great nature photographer who I admire. The American photographer John Shaw. He says there are two questions you should ask yourself before pressing the shutter.

- *Why am I taking this photograph*
- *What do I want to show the viewer*

You must be able to articulate the answers to these two questions. If you can't answer the questions, then the photograph is just random. If you have several answers to the two questions then you ought to be taking several photographs.

The late photographer Gerhard Kerff said '*you should ask yourself what is the best way to achieve a sense of space in the picture? And what is the typical characteristic of the landscape?*

My aim is to keep things simple. Have a focus in the image. Everything else captured should support the focus and not distract from it.

The focus is the solitary tree. I took this photograph because I wanted to show the viewer this tiny tree set at the bottom of the rocky desolate cliff.

I asked an AI what makes a good landscape photograph. Its response was:-

'A good landscape photograph is defined by a strong subject, compelling composition, and compelling light, often using elements like a clear foreground, leading lines, and a shallow depth of field for a sharp front-to-back image. Ultimately, it elicits an emotional reaction from the viewer by using the natural world.'

RESEARCHING YOUR PHOTOGRAPHY LOCATION

The best maps in the world are produced by the UK's Ordnance Survey. However, most countries have excellent map makers with their products available online. When researching an area, I recommend using a good map. Together with researching information about the area online.

Here is an example of the Ordnance survey 1:25000 Explorer mapping. It includes contour lines and so much useful information. These maps are available online or in printed form.

Copyright Ordnance survey 2005.

WEATHER

I always consult an online weather forecast. I use the Met Office in the UK. You can take landscape photographs in any weather conditions. Misty conditions are great in woodlands or for distant vistas. Overcast conditions bring out pastel shades in the landscape. In bright sunny conditions you can use areas of shadow to minimise contrast or take macro photography shots. Sunrise or sunset are favourite times and don't forget blue hour when the sun is just below the horizon. Snowfall will greatly simplify a landscape. Take photographs at night using moon light, light pollution. Or use very long exposures in near darkness.

BASIC PRINCIPALS

My approach is to compose the image in-camera and do minimal editing back at the computer. I normally use a tripod, especially when using long lenses. A tripod helps me compose images in a more precise way than I can when I'm hand holding and it also slows me down. Shorter focal lengths can be hand held with care. But then I aim for a shutter speed 2x or ideally 3x the focal length of the lens, even with in-camera and in-lens stabilisation. If needed, I just increase the ISO to get a higher shutter speed. Modern sensors produce relatively low noise but it can be dealt with in the computer using noise reduction software.

I always aim for simplicity in an image. Minimalism is the way to go. Make sure your picture helps the viewer 'take in' the image. Have a focal point. Use leading lines to take you into the image. Avoid chaos, particularly in woodland photography. I like converting images to black and white to accentuate shape and form. Sometimes colour can be a hinderance and over complicate an image.

I often get people come up to me when I have my camera on a tripod. If this happens to you, welcome their curiosity and take time to tell them what you are doing and show them an image on the back of your camera.

THE STANDARD 50MM LENS

This is probably the most common prime lens focal length and not to be under estimated.

Swanpool, Falmouth UK. Olympus Zuiko 50mm f 3.5 macro on my Sony A7Riii body. The sea pinks in the foreground add depth to the image. The only changes made to this image are improvements to the contrast of the clouds. Capture your images carefully and minimise what you need to do in post-production editing.

This image is an example of a middle focal length range lens. It was taken at 70mm which is a good focal length for portraits as well. F5.6 iso 100 1/200 seconds hand held. Colour did not add much to the image as there was flat light, so I processed it and converted it to black and white in Darktable.

WIDE ANGLE LENS

Focal lengths up to 50 mm are traditionally considered wide angle. When using these lenses its normally best to ensure there is some foreground interest, as background objects will become small. In the image below I've included the curve of the beach to lead the viewers eye into the image.

38mm focal length, 1/400 sec at f8, ISO 100. 16:9 crop

St Pauls Cathedral. A wide-angle lens on an iPhone 11 pro shows Sir Christopher Wren's beautiful Cathedral, in comparison with the dismal modern architecture around Paternoster square. The perspective has been corrected in post-production so verticals remain vertical.

TELEPHOTO LENSES

Any lens over 50mm is traditionally considered telephoto. However, 'telephoto' has a precise meaning, which is a lens whose physical length is shorter than its focal length. Previously, my most used prime telephotos were 90mm, 135mm, 180mm and 300mm. Now my most used lens is a 100 to 400mm zoom lens which covers all of these focal lengths.

Below an example from the Sony 100 to 400mm showing how much you can crop with a very sharp lens coupled to a 43mega pixel sensor. The atmospheric seeing conditions are the only thing which limits this lens. Use a tripod when-ever you can and a remote release or a delay timer of 2 to 5 seconds to avoid camera vibration if you press the shutter!

St Mawes Castle at 400mm

A Crop to a 1200mm equivalent focal length lens

A crop to a 3600mm equivalent lens

A crop to a 6700mm equivalent lens.

Up-scaled by 4x = equivalent to an 18000 mm lens!

With a telephoto so many compositions are available from one vantage point. Your final resolution requirements depend whether you are displaying images on the internet or producing large prints. Even then you can often use modern AI up-scalers such as Topaz Gigapixel AI to increase your pixel count.

SUNSETS


This image was taken with an iPhone 11 pro. Use the camera you have. I exported it as a Tiff into Affinity Photo, where I made a slight crop and modified the exposure. The sunset is the focal point. The silhouetted people on the right are balanced by the dark rock on the left. The slightly lighter area of sand below the sun is the leading line taking the eye towards the sun.

LANDSCAPES AT NIGHT

Long exposure night time photography opens a new world. For this you will need a tripod and ideally a remote release. Either a phone app or a wired release. More advanced releases include sophisticated timer functions to allow for very long exposures, time lapse, time delay and multiple exposures and are not expensive. Typically, under £50/\$50

The test image above is a tight crop of a full frame image. The exposure is 120 seconds at iso 100. This exceeds the 30 seconds maximum in camera exposure, so I used a remote release for simplicity. Taken with a Sony 90mm f2.8 macro lens. Modern image sensors produce low noise and have a wide dynamic range, often exceeding 14 stops. You can take in-camera dark frames to subtract some of the noise and / or use noise reduction software in post. The best guide to exposure is the LCD screen on the camera displaying the images histogram.

iPhone 13 in night mode. The clouds were near pitch black to the eye. A 3 sec exposure! The whole scene was hardly visible with the naked eye. Modern sensors and in camera image processing can create images nearly impossible using film.

NOISE

Above is a close-up image of the previous page's 120 second image. The left frame shows the noise in the image. The right frame has been treated using Denoise software. This retains the image detail whilst reducing the grain caused by noise in the camera's sensor. Specialist astronomical cameras run at low temperatures (-20 or more degrees C to -180 degrees C) to reduce this thermal noise. You can also mitigate noise by taking dark frames (with the lens cap on and at the same exposure settings and temperature) and subtracting them from the image. This is done at the time of capture in camera.

Another way to reduce noise is to align and stack frames. If N is the number of frames the noise level is $\sim 1/\sqrt{N}$. If you stack 4 frames you reduce the noise by $\sqrt{2}$. 16 frames reduce it by $\sqrt{4}$. The noise in the image is generated by thermal effects. That's why specialist astronomical cameras have active cooling. Letting your camera cool down outside will also reduce noise, assuming the outside air temperature is cool.

Modern cameras are far lower noise levels than the earlier digital cameras from the early 2000s'.

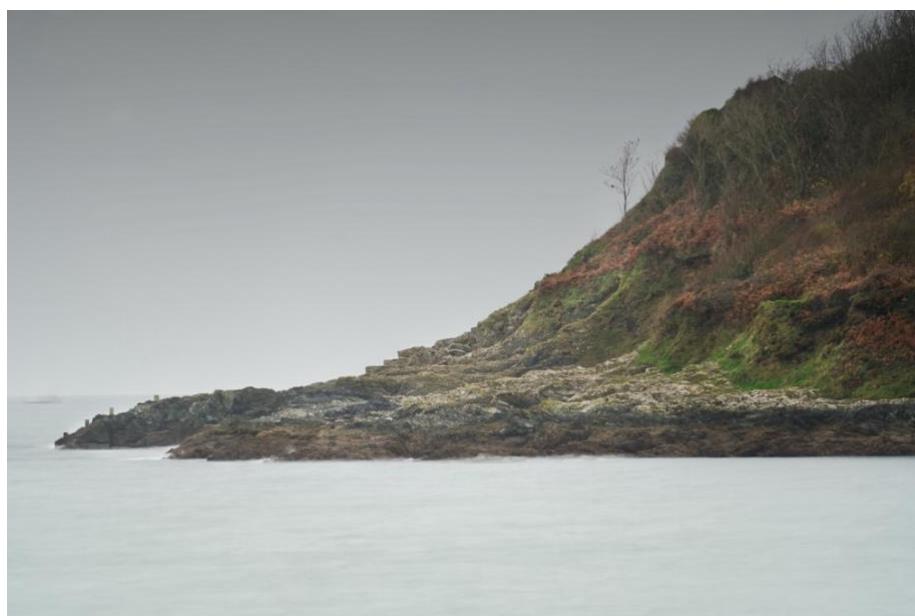
CIRCULAR POLARISING FILTERS

If you could only have just one filter then get this one. Its main use is to remove reflections off surfaces such as water. It will saturate colours and make the sky, particularly at 90 degrees to the sun a darker blue. You can rotate the filter glass to vary the effect.

I buy filters for my largest lens thread. In my case 77mm and then use step down rings for my other lenses. This avoids buying multiple filter sizes. There is a lot of debate about whether to use protection filters on lenses. I do use them. Partly because I live by the sea and it is not easy removing salt spray from the front element of a lens without damaging the lens coating. With a good quality filter, you will not detect any image degradation.

The other item I use whenever possible is a lens hood. This can reduce flare from the sun or bright lights when outside of the frame and also keep rain off your lens.

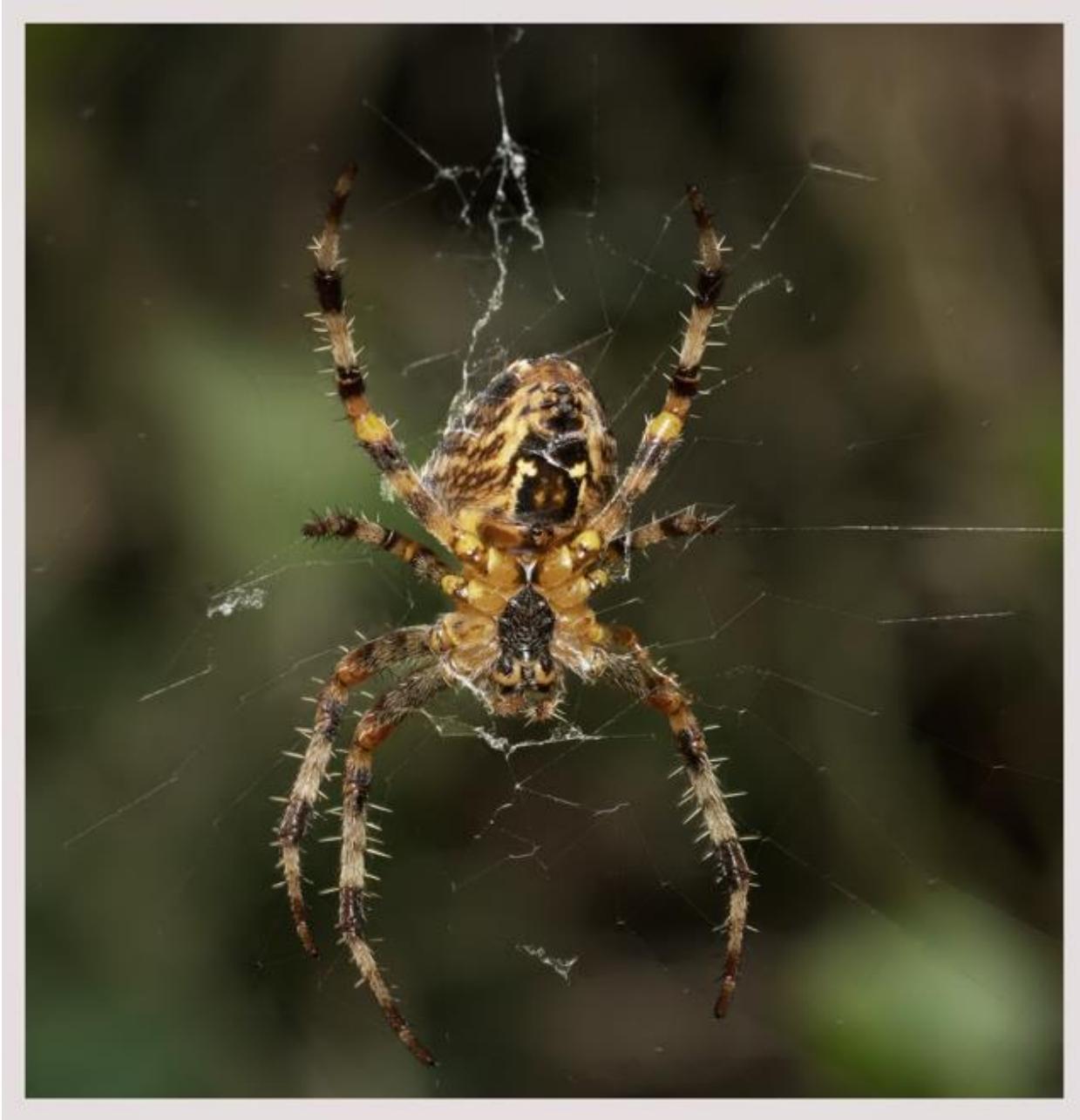
Here a circular polariser has darkened the blue sky in the image on the right. The original image without the filter is on the left. The CP filter will also remove reflections off water too.


Courtesy Hoya Filters.

NEUTRAL DENSITY FILTERS

By placing a 'dark' piece of optical glass – a neutral density filter – in front of your lens you will need to increase the shutter speed to get the correct exposure. This can be of benefit when filming water. See below.

A 400mm lens and a 1/40 second exposure with no filter at f8 iso 100. Notice how the shorter exposure shows the texture of the water. But this can sometimes distract from the image.


Using a 400mm lens and a 4 second exposure with ND 64 filter (6 stop) at f8 iso 100. Notice how the long exposure smooths the water, removing some of the texture which simplifies the image. The camera was mounted on a tripod for both shots

MACRO PHOTOGRAPHY

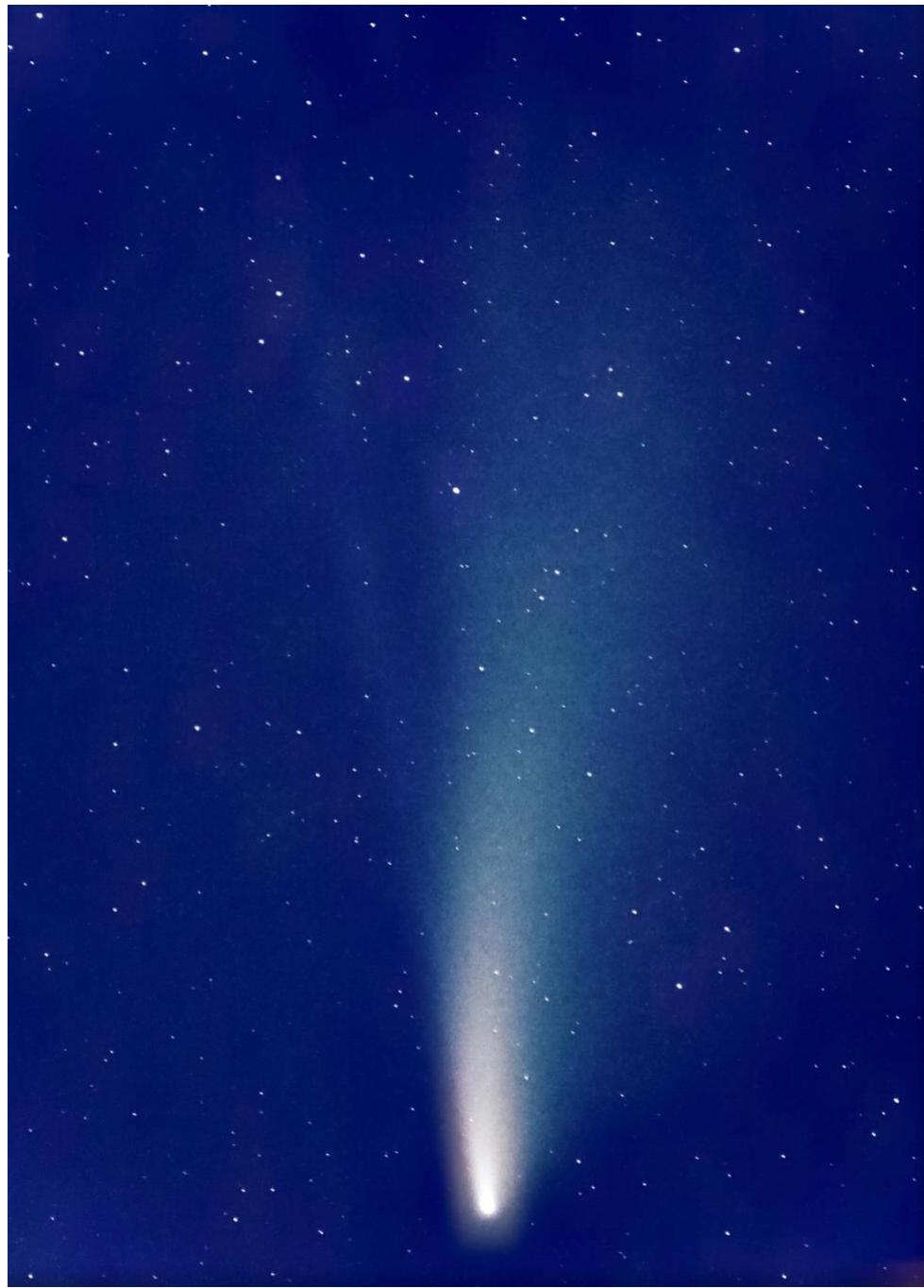
There are two main approaches to taking 'close up' shots. For 'close up' I mean magnifications up to 5x life size at the image sensor plane. Magnifications greater than this generally require creating images in a studio. Strictly speaking macro photography covers magnifications of 1x or greater. The first method is to use flash, hand held. This is the method to use when photographing moving subjects such as insects or spiders. The second is to use static lighting, either LED lighting and / or natural light.

The common Wood louse. *Oniscus asellus*. Image taken using a Sony 90mm f2.8 macro lens. I focus stacked 8 images to give focus from the front to the back of this small creature which was only about 3 mm long. The camera was hand held and the shot was taken using a Godox 860iii flash and Cygnus tech diffuser. I also cropped the final image, one of the benefits of a high-resolution sensor such as on the Sony A7riii.

The garden Cross Orb weaver spider - *Araneus diadematus*. Photo taken handheld using a Goddox flash. Insects don't stay still long enough to easily capture focus stacks without a flash. The Image above was taken with an Olympus Zuiko 90mm f2 Macro lens on a Sony A7Riii camera body, focus stack created by moving the camera gradually towards the subject in burst mode. For that you need a flash which can quickly recycle at 5 to 10 frames per second.

For in-animate objects such as fungi you can use natural and or LED lighting, as well as in camera focus bracketing. If you don't have the latter, you can use a focussing rail.

Macro photography enables you to see a new world. One you would not normally see. Above is a Rhododendron Bud. Laowa ultra macro lens 2.5x to 5x at f 2.5 using a Cygnustech diffuser and Goddox flash hand held. The bud was moving in the wind so I used flash to freeze the subject for each frame of the focus stack.


Here is Brendan James, the inventor of the superb Cygnustech diffuser taking a photo using the diffuser he designed. The diffuser produces a wonderful even light which avoids extreme highlights which can ruin flash photos. I thoroughly recommend the diffuser and Brendan gives great customer service. He makes each diffuser to order to match your camera, flash and lens combination. Image copyright Brendan James. www.cygnustechdiffuser.com

ASTRO PHOTOGRAPHY

You can use your camera to take images of the heavens. Whilst many Astro photographers use telescopes running at f2 to f22 or more with focal lengths of 1000mm to 10,000mm on guided mounts, you can take wide angle photos easily using the equipment you already have.

The Moon. Image taken using a Sony 100 to 400mm GM lens set to 400mm at f5.6. 1/50 second iso 100. Lens and camera mounted on a tripod. Shutter released using phone app to avoid touching the camera which might have induced vibration. Original image cropped.

Comet Neowise 2020 F3 taken on 20th July 2020 Olympus Zuiko 90mm f2 macro lens at f2 with the Sony A7riii camera set to iso 6400. A single 5 second exposure unguided.

POST PRODUCTION – AT THE COMPUTER

THE IMPORTANCE OF RAW FILES

Most cameras can save images in their RAW (native) format. The advantage is that each shade of grey can be represented by up to 15 stops of levels. That's 2 to the power of 15. This means you can recover dark areas, which if saved in an 8 bit format like jpeg you could not. Remember slide film could handle just a 6 stop range. So, if you can, save your images as RAW files. Each manufacturer has its own format but modern image processing software can decode this.

SOFTWARE

Here is a list of hardware and software I can recommend: -

I use a Mac running Apple Silicon. If you are buying a new Mac I recommend a Macbook air or pro running on Apple Silicon. M1 processor or later.

Photo editing software. Affinity by Canva - It is now free! <https://www.affinity.studio>. No need to pay for subscription services anymore such as those by Adobe.

Camera manufactures free software such as Sony Imaging Edge.

Darktable is for me a Lightroom replacement. It is more sophisticated, but worth learning as you have a lot more control over the image. It is free! It now has excellent sharpening module (in the demosaic module from version 5.3). It's also good for denoise and upscaling. So you don't need to use Adobe or Topaz products.

Specialist paid software

Focus stacking software. Zerene is excellent <https://zerenesystems.com>. Free trial available. Or Affinity's inbuilt focus stacking which is free.

Topaz Photo AI a paid app but it does excellent advanced noise reduction and sharpening. Free trial available. <https://www.topazlabs.com>. Also Topaz GigaPixel AI for upscaling images.

For astronomy there are many specialist programs which are worth investigating.

POST PROCESSING

I don't like to do a lot of post processing to my images. I don't add features which weren't there either. Such as false aurora or rainbows. To me, it's like fishing using dynamite. Yes, it's easier to get an interesting image but it removes the challenge! Below is an example of a typical Darktable workflow with the typical modules I might use, but is similar in other RAW developers such as Adobe camera raw or Affinity photo. I normally limit my post processing edits to:-

1. Demosaic and Input sharpening – Demosaicing is automatic in software
2. Colour Profiles and White balance - ditto
3. Colour Calibration and exposure - ditto
4. -
5. Local Contrast
6. Lens profile corrections,
7. Local adjustment - exposure,
8. Final colour balance and saturation or turn into monochrome,
9. cropping and aligning,
10. focus stacking if required – all input images will need the same edits,
11. noise reduction,
12. dust spot removal,
13. Upscale if required,
14. Add a frame around the image.

I don't use Artificial Intelligence AI features except for subject selection for local adjustments.

CROPPING

The ideal way to take a photograph is to frame your subject perfectly in the field. In reality it's often necessary to crop on the computer to get the composition just right. The other benefit is that you can 'crop in' and effectively give yourself a longer focal length lens. Most modern digital cameras have more than enough pixels in their sensor to enable you to do this, without a significant loss in resolution.

Above is the original unprocessed raw image taken at 70mm handheld. I cropped in the example below. My 70mm lens now becomes 220mm. A high mega pixel camera with good lenses gives you the option of useful crops.

When I took this image home and looked at it on the computer screen and I could see an even better image by zooming into the lone tree on the headland. But for that, I needed to use my longer lens, and so returned to the location later in the day. Next is the image I took.

Above is a 1:1 aspect ratio crop from my 400mm lens image producing the same magnification as an 800mm lens. It's still a 15 mega pixel image. Telephoto lenses are wonderful. They give you so many compositions from one vantage point. They also give you views which are not accessible to the unaided eye. The extreme sharpness of my Sony 100 to 400mm G master lens coupled with a 43 mega pixel sensor means it's possible to crop an image on the computer and make further images!

I placed the tree at the middle third point. The diagonal of the cliff is running through the middle of the image which adds drama. The sky's exposure was adjusted to make it darker and moodier. The overcast sky brought out the pastel shades of the bracken ferns and grass. A crow sits on the tree drawing the eye toward it.

USING MASKS TO MAKE ADJUSTMENTS TO YOUR IMAGE

Below is the 400mm image which I cropped to produce the image on the previous page. I made a luminosity range mask to pick up the bright sea and the sky. The mask only comprises the very brightest areas of the image. I then increased the exposure of these areas but avoided clipping. What is left looks like an island floating in a 'cloud'. Notice that the ND 64 filter on the lens lengthened the exposure by 6 stops to 4 seconds and smoothed out the sea's surface.

A luminosity mask was used to pick out the bright sea and sky areas and I used it to adjust their individual exposures whilst keeping the land exposure unaltered. Sony 100 to 400 GM lens at 400mm uncropped. In the raw image you can see the beak of the crow sitting in the lone tree! See below.

PANORAMAS

The image above is a 108,000,000 pixel (108 mega pixel) panorama of St Mawes. Panoramas enable you to create a 'wider' lens view of a scene. The image was taken at 400mm focal length and comprises 4 images, with an overlap of about 1/3rd image width. There is a tremendous amount of detail in the original image. If you don't have a wide enough field of view with your widest lens you can create a panorama which gives you a virtual wide-angle lens.

Cropping does the opposite and enables you to zoom in to an area as if you had a longer focal length lens.

When I create panoramas, I use a manual exposure so the exposure remains identical between images to avoid getting lines at the individual image intersections. This panorama was created in Affinity. I was able to support the lens near its optical centre using its mounting shoe. This avoided distortions between images but is not strictly necessary with modern image processing.

STACKING AND BLENDING

St Anthony Lighthouse at 400mm. I cropped the top and bottom of the image slightly. I took 3 images and stacked them so they were aligned. Then I blended them together to smooth out the surface of the sea. Each of the 3 images comprising the overlay stack contributed 33% of the total pixel values. Stacking and adding are also useful for reducing noise in an image when you are taking photographs in low light.

When I'm taking landscapes, I strive to keep my horizons horizontal. With sea-scapes, you can use the horizon as your guide. When you are imaging other landscapes, another method is to use the cameras 'level' display. Most cameras have this. Or otherwise, a built-in spirit level on your tripod head. If you find your horizon is still not horizontal you can 'level' it in post processing. In Photoshop or Affinity, you just draw a line along the horizon. In Affinity it's in the crop tool and the option in the top menu bar.

Here is a black and white version of the same image. Its often worth converting images to black and white to see what they look like. I quite often prefer monochrome images over the colour originals. Sony 100 to 400 GM lens at 400mm.

BLACK AND WHITE

Compare the two images below. They are the same image. One in colour, the same one converted to black and white.

Swanpool Beach. The same image but in black and white. Monochrome images bring out form and pattern and avoid colour distractions. They can also add drama! Olympus EM1 lens 26mm f3.2 iso 200 1/4000 sec.

A simple black and white image. This high contrast scene which was originally shot in colour but I think it looks better in monochrome. The path creates a leading line taking the viewer into the photo. The overhanging tree creates a frame. Taken using an Olympus EM1 at 14mm.

FRAMING YOUR IMAGE

ST. MAWES

St. Mawes. Cornwall UK. Olympus EM1 and Zuiko 300mm f 4.5 lens. See how a crop and adding a frame can complete an image. Use a tripod when-ever possible. If that's not possible then aim for shutter speeds in excess of 2 x the focal length and always take several shots. Tripods allow you to carefully compose the image, slows you down and makes you consider the image!

PRINTING

Unless you are a professional photographer, I would recommend that you use a printing service to produce your images. They can also frame the prints for you. Printing ink is very expensive and if you don't use an inkjet printer frequently the ink heads will clog. If you do get a printer, I would recommend you get an A3 or A2 photo printer. My experience is that both Epson and Canon both make excellent photo printers.

If you want a company to do the printing for you, I can recommend the following who will do the prints with an option to frame them for you. You just upload your final processed image:-

For professional photo and art printing.

Theprintspace.co.uk

Typical price is around £25 for an A3 print and £50 for an A2. On glossy paper without a frame.

LANDSCAPE PHOTOGRAPHERS OF NOTE

Below is a list of some of my favourite landscape photographers. It's worth looking at their books and You tube videos.

Ansel Adams
John Shaw
Gerhard Kerff
Joe Cornish
Charlie Waite
Michael Shainblum
Adam Gibb
Bri Barnum
Tony Howell
Thomas Heaton
Mads Peter Iverson
Jimmy McDonnell
Nick Page
Kim Grant
Courtney Victoria
Nigel Danson

INDEX

A

Adobe · 30
Affinity · 30
atmospheric seeing · 9, 17

B

BLACK AND WHITE · 38
BLENDING · 36
blue hour · 12

C

CIRCULAR POLARISING FILTERS · 22
CLOSE UP LENSES · 8
Contra Jour · 5
CROPPING · 32
Cygnum tech diffuser · 24
Cognustech · 27

D

Darktable · 30
diffraction · 9
down-sampled · 2

E

extension tubes · 8

F

flare · 22
focus stacked · 24
FRAMING · 40

G

GM 100 to 400mm · 7

H

horizon · 36

I

iPhone · 6

J

jpeg · 30

L

leading line · 19
lens hood · 22
light pollution · 12
luminosity mask · 34
luminosity range mask · 34

M

Mac · 30
macro lens · 24
MACRO LENSES · 8
Met Office · 12
micro four thirds · 5
Minimalism · 13

N

Neutral Density Filters · 23
NOISE · 21

O

optical centre · 35
Ordnance Survey · 12

P

PANORAMAS · 35
POLARISING FILTERS · 22
POST PRODUCTION · 30
PRIME LENSES · 8
PRINTING · 41

R

RAW · 30
raw image · 32
RESOLVING POWER · 9

S

Sony Imaging Edge · 30
STACKING · 36
step down rings · 22

T

teleconverters · 9
telescopes · 28
Topaz · 30

tripod · 13

W

WIDE ANGLE LENSES · 8

Z

Zerene · 30

END PAGE

The light on an overcast day can create a moody image
38mm, 1/400 sec at f8, ISO 100. 16:9 crop